
All Aboard the Type TrainAll Aboard the Type Train

Kadi KramanKadi Kraman
@kadikraman

Formidable



Why this talk?Why this talk?



Why add types to JavaScript?Why add types to JavaScript?

Should you use Flow or TypeScript?Should you use Flow or TypeScript?

... or something else entirely!



All programming languagesAll programming languages
have a type systemhave a type system

The difference is The difference is whenwhen the type- the type-
checking is donechecking is done



Strong vs WeakStrong vs Weak
Languages are often colloquially referred

to as strongly typed or weakly typed.

There is no universally accepted definition
of what these terms mean.

�♀ �♀ 



Static vs DynamicStatic vs Dynamic

JavaScript is a languageDynamically Typed

Types are checked before run-time

Types are checked at run-time, during
execution

Static (e.g. Go, C#, Haskell)Static (e.g. Go, C#, Haskell)

Dynamic (Python, Lua, Objective C)Dynamic (Python, Lua, Objective C)



Static typingStatic typing

ProsPros ConsCons

More errors found earlier in
development

Fewer errors at run-time
and shipped code

No need to write tests for
"type-correctness"

Verbose type declarations

Complex error messages

Excessive boilerplate

(not JavaScript)



Dynamic typingDynamic typing

ProsPros ConsCons

Implicit polymorphism (the
ability to write a single
function that handles many
data-types)

Reduces clutter and
repetition in code

More errors detected during
run time and in shipped code

Need to write tests for type
correctness

(e.g. JavaScript)



Additional type-checkingAdditional type-checking
will not make code bug-freewill not make code bug-free

It is not a replacement for testing your code

It only helps reduce type errors

DISCLAIMER!DISCLAIMER!



How to make JavaScriptHow to make JavaScript
more type-safe?more type-safe?

Statically typed language that
compiles to JavaScript

Static code analysis
1.1.

2.2.



Flow - static type checkerFlow - static type checker

Static code analysis1.1.

Infers type information from existing code

You can choose to enforce types

(Atom, with Flow plugin)

Facebook 2014



TypeScript - a superset ofTypeScript - a superset of
JavaScriptJavaScript

2.2. Statically typed language that compiles to JavaScript

Infers type information from existing code

You can choose to enforce types

(VSCode, with TypeScript plugin)

Microsoft 2012



"Opt in" by adding a
flow declaration at the

top of the file

Adding to anAdding to an
existing codebaseexisting codebase

FlowFlow TypeScriptTypeScript

TS is a superset of JS
(so any valid JS file is
also a valid TS file)

But you do have to
change the file
extension to .ts



ConfigurationConfiguration
FlowFlow TypeScriptTypeScript



PerformancePerformance

FlowFlow TypeScriptTypeScript

Slow to recompile on
large projects

�

Usually fast, but
notoriously unstable



CommunityCommunity
FlowFlow

TypeScriptTypeScript

(by Facebook, 2014)

(by Microsoft, 2012)



Typing Node ModulesTyping Node Modules

FlowFlow

TypeScriptTypeScript



So why are a lot of projectsSo why are a lot of projects
moving to TypeScript?moving to TypeScript?

Larger community

Faster release cycle

More reliable

The features that made flow "better" have
been implemented in TypeScript



What you should know before jumpingWhat you should know before jumping
on the TypeScript "Type Train"on the TypeScript "Type Train"

For best results, use VSCode

Be prepared for a lot of Object Oriented influence

tslint (the TypeSctipt linter) will be deprecated in 2019
So use typescript-eslint

TypeScript is a compiled language, not a static type-checker -
if you have type errors in your code, it will not compile



Elm (2012 by Evan Czaplicki)

Compiled, statically typed, type declarations
are optional, purely functional.

ReasonML (2016 by Jordan Walke at Facebook)

Transpiles to OCaml which compiles to JS,
statically typed

"Why not just use a proper statically typed"Why not just use a proper statically typed
language?"language?"



Thank You �Thank You �

All Aboard the Type TrainAll Aboard the Type Train

by Kadi Kraman (@kadikraman)


