Append-only development with React
An intro to Behavioral Programming

Luca Matteis
@Imatteis

Ask HN: Why Isn't Functional Programming Taking Over?

Because programming languages are practically
irrelevant in making products.

C From a
reliability stand point Windows has always been a
nightmare. It is still one of the best and most
successful products of all time. It could be written
in Urdu and no one would care.

he problem

No matter the tools or abstractions we
use, having to maintain a complex
artifact we call “code” seems to be the
root of the problem.

General intuition

What if we could make changes or
understand how complex systems
work without having to read and
maintain an artifact?

Complex system

Behavioral Programmimg - Author's vession. For official published version see Comsunications of the ACM

Behavioral Programming

David Harel
Weizmann Institute of Science

ABSTRACT

We describe an implementation-independent programming
paradigm, behavioral programming, which allows programmers
o build executable reactive systems from specifications of
behavior that are aligned with the requirements. Behavioral
programming simplifies the task of dealing with under-
specification and conflicting requirements by enabling the
addition of software modules that can not only add to but also
modify existing behaviors, A behavioral program employs
specialized programming idioms for expressing what must, may,
or must not happen, and a novel method for the collective
execution of the resulting scenarios, Behavioral programming
grew out of the scenanio-based language of live sequence charts
(LSC), and is now implemented also in Java and in other
environments. We illustrate the approach with detailed examples
in Java and LSC, and also review recent work, including a visual
trace-comprehension tool, model-checking assisted development,
and extending behavioral programs 1o be adaptive.

1. INTRODUCTION

Spelling out the requirements for a software system under
development s not an easy task, and translating captured
mquimummoumopmmnalwnmmbemm
Many technologies (languages, modeling tols, programming
paradigms) and methodologies (agile, test-driven, model-driven)
were designed, among other things, to help address these
challenges. One widely accepted practice is to formalize
requirements in the form of use cases and scenarios. Our work
extends this approach into wusing scemanios for actual
programming. Specifically, we propose scemano coding
techniques and design approaches for comstructing reactive
systems [25] incrementally from their expected behaviors.

.

Assaf Marron
Weizmann Institute of Science

Gera Weiss
Ben Gurion University of the Negev

Now we may already start playing. Later, the child may infer, or
the teacher may suggest, some tactics:

AddThird0: Afer placing two O marks in a line, the O player should
try 1o mark the third square (to win the game);

PreventThirdX: After the X player marks two squares in a line, the O
player should try to mark the third square (1o foil the attack),

DefaultOMoves: When other tactics are not applicable, player O
should prefer the center square, then the comers, and mark an edge square
only when there is no other choice;

Such required behaviors can be coded in executable software
modules using behavioral programming idioms and infrastructure,
as detailed in sections 2 and 3. Full behavioral implementations of
the game, in Java and Erlang, are described in [22] and [48],
respectively. In [18] we show how model-checking technologics
allow discovery of unhandled scenarios, enabling the user to
incrementally develop behaviors for new tactics (and forgotten
rules) until a software system is achieved that plays legally and
assures that the computer never loses.

This cxample alrcady suggests the following advantages of
behavioral programming. First, we were able to code the
application incrementally in modules that arc aligned with the
requirements (game-rules and tactics), as perceived by users and
programmers. Second, we added new tactics and rules (and still
more can be added) without changing, or even looking at, existing
code. Third, the resulting product is modular, in that tactics and
rules can be flexibly added and removed to create versions with
different functionalities, e.g., to play at different expertise levels.

Naturally, composing behaviors that were programmed without
direct consideration of mutual dependencics raiscs questions
about conflicts, under-specification, and synchronization. We deal

with these issues by using comnosition onerators that allow bath

Requested Events

b-thread

b-thread Blocking

b-thread

b-thread

Selected Event

All b-threads synchronize and place their “bids™:
o Requesting an event: proposing that the event be considered for triggering,
and asking to be notified when it is triggered;
o Waiting for an event: without proposing its triggering, asking to be notified
when the event is triggered;
o Blocking an event: forbidding the triggering of the event, vetoing requests of
other b-threads.
An event that is requested and not blocked is selected,;
b-threads that requested or wait for the selected event are notified;
The notified b-threads progress to their next states, where they place new bids.

Request, wait and block

while(true) {

yiel
yiel
yiel

'd { wait: 'waterlevel Low }

'd { request:
'd { request:

yiel

h

'd { request:

'addHot'
'addHot'
'addHot'

¥
¥
¥

Event trace

vwhile(true) {
yield { wait: 'waterLevel Low }

!

yield { reqg
yield { reqg
yield { rec

¥

uest:
uest:
uest:

ad

Hot' }
1dHot '

Event trace

wat er Level Low
addHot
addHot
addHot

Event trace

wat er Level Low
addHot

while(true) {
yield { wait: 'waterLlevel I4
yield { request:
yield { request:
yield { request:
}

while(true) {
} yield { wait: 'waterLevel Low }
yield { request: 'addCold' }
yield { request: "addlold }
yield { request: 'addCold' }

Event trace

wat er Level Low

addHot

while(true) { while(true) { addHot
yield { wait: 'waterlLevellLow } yield { wait: 'waterLevel Low }

yield { request: "addHot™ } yiteld { request: 'addCold' addHot
yield { request: 'addHot' } yield { request: pmaddlldl addCol d
yield { request: 'addHot' } yield { request: addCol d

} ; addCol d

while(true) {

}

yield { wait: 'waterLevel Low }

yiela { request:
yield { request:
yield { request:

“aaarot
'addHot'
"addHot'

¥
¥
¥

while(true) {

}

yield { wait: 'waterlLevel Low }

yIE€ra { request:
yield { request:
yield { request:

“agawora
"addCold' }
"addCold' }

while (true) {

yield {
wait:
bl ock:

¥

yield {
wait:
bl ock:

'"addHot ',
'addCol d'

"addCol d',
'addHot'

Event trace

waterLevel Low
addHot
addCol d
addHot
addCol d
addHot
addCol d

Stability

Event Log

wait for addHot
while blocking
addCold

l

WhenLowAddHot WhenLowAddCold
wait for wait for
waterLevellLow waterLevellLow
request addHot request addCold
request addHot request addCold

request addHot

request addCold

wait for
addCold while
blocking addHot

waterLevelLow
addHot
addCold
addHot
addCold
addHot
addCold

Event trace

Event trace

Event trace

- cardInserted
- cardIsValid
- loadingAccount

- accountLoaded
- waitingForPin

Show advertisement before the
account is loaded

Event trace

- cardInserted
- cardIsValid

- showAd
- adShown

- loadingAccount
- accountLoaded
- waitingForPin

Show advertisement before the
account is loaded

What currently happens What we want
- cardInserted - cardInserted
- cardIsValid - cardIsValid
- loadingAccount - showAd
- accountLoaded ' adShown
- loadingAccount

- waitingForPin
- accountlLoaded

- waitingForPin

1 nr advertisement before the

while (true) { pd while (true) {
yield { wait: 'cardIsValid' } ™ yield { wait: 'cardIsValid' }
yield { yield { request: 'showAd' }
wait: 'adShown', yield showAdvertisnent ()
block: 'loadingAccount' yield { request: 'adShown' }
} }
h
What currently happens What we want
- cardInserted
- cardIsValid
- showAd
- adShown
- loadingAccount
- accountLoaded

- waitingForPin

1 ~ar advertisement before the

while (true) { p@ while (true) {
yield { wait: 'cardIsValid'" } ™ yield { wait: 'cardIsValid' }
yrera ©© yield { request: "showAd' }
wait: 'adShown', yield showAdvertisnent ()
block: 'loadingAccount' yield { request: 'adShown' }
¥ ¥
}
What currently happens What we want
- cardInserted - cardInserted
- cardIsValid - cardIsValid
- adShown
- adShown _
. - loadingAccount
- loadingAccount
- accountLoaded - accountlLoaded

- waitingForPin - walitingForPin

Event trace

- cardInserted

- cardIsValid

- ISEnterprise
=

- ad wn

- loadingAccount

- accountLoaded
- waitingForPin

"while (true) {
yield { wait: 'isEnterprise'
yield {

block: ' showAd'
¥
}

\.

What happens

- cardIngerted
- cardIsYalid

- loadingAccount

- accountLoaded
- waitingForPin

Prig while (true) {
e

}
\

yield { wait: 'cardIsValid' }

yield {
wait:
bl ock:
}

[' adShown' , 'isEnterprise'],
'l oadi ngAccount,

What we want

- cardInserted

- cardIsValid

- IsEnterprise

- loadingAccount

- accountLoaded
- waitingForPin

Main insight
Newly added code can change how old
code is executed

Let’s play Tic Tac Toe

(shift+click to draw OI

{ type:
{ type:
{ type:
{ type:
{ type:
{ type:
{ type:

:X", payload: 8 }
..0."’ payload: 5 }
"XI', payload: 2 }
"xl', payload: 4 }
"X', payload: 6 }
"0", payload: 3 }
0", payload: 0 }

{ type:
{ type:
{ type:
{ type:
{ type:
{ type:
{ type:

:X", payload: 8 }
..°."’ payload: 5 }
"X', payload: 2 }
..°."’ payload: 3 }
"X', payload: 4 }
..°."’ payload: 0 }
X", payload: 6 }

(shift+click to draw 0)

b-thread: EnforcePlayerTurns

Y

function* enforcePlayerTurns() {
while (true) {
yield { wait: "X, block: "O };
yield { wait: 'O, block: "X };
¥
d J

How to use it with React?

function* ReactCell() {
const { idx }
S.updateView(

<|

onClick={e => {
if (e.shiftkKey) {
.request({ type: '0', payload: idx });

.request({ type: 'X', payload: idx });
}}
/>
);
const eventkFn event
(event.type 'X* |
=== 1dX;
yield {
wait: [eventFn]
};
s.updateView(< ton>{ s.lastEvent().type}</
‘_,fili‘lt'f {
block: [eventFn]
};

const Cell = connect(ReactCell);

>
idx={0} />
- :
/)o idx={1} /> <
idx={3} /> .
< ' N
idx={4} /> < |
idx={5} />
{" '}

:
/ .
/>

Event trace = behavior

Making changes to these projects
didn't require us to understand how
they were implemented. We simply
fed the system new scenarios based
on the event traces we wanted to see

happen.

Driving directions

Start driving on I-78 W [135 mi]
Merge onto I-81 S [36.6 mi]
Take ramp onto I-76 W [152 mi]
Merge onto I-70 W [613 mi]

Merge onto I-44 W [497.2 mi]
Continue to I-40 W [1,214 mi]
Merge onto I-15 S [72.6 mi]
Merge onto I-10 W [38.9 mi]

Daily schedule

Repeatedly:

— Drive for 5 h; look for restaurant
— Stop the car; have lunch

— Drive for 5 h; look for restaurant
— Stop the car; have dinner

— Drive for 2 h; look for hotel

— Stop the car

— Sleep until morning

A 6-day trip from NY to LA

scenarios code

aka: requirements, stories, threads, b-threads, etc.

scenarios

aka: requirements, stories, threads, b-threads, etc.

scenarios

aka: requirements, stories, threads, b-threads, specs, etc.

b-threads

function *() { nct

yield { .. } yie
yield { .. } yie
yield { .. } yie

Harel, David, and Assaf Marron. "The quest for runware: on
compositional, executable and intuitive models." Software & Systems

Modeling 11.4 (2012): 599-608.
{1"’
[=

In our vision, the units of the specification and models
are not assembled 1n detail like resistors or chips on a com-
puter board, or methods and fields in an OO-programming
object class. The interweaving of behavioral modules will be
facilitated by their reference to common aspects of system
behavior described using shared vocabularies (for example,
common events), and not via mutual awareness and direct
communication between components. From the point of view
of such a module, the other modules could be transparently
replaced by new ones.

3

-

£ »
N
\F

Takeaways

- “Moving” the by requesting,
waiting and blocking events allows for
incremental development

- Alignment with requirements and how
humans think about behavior

- B-threads are “piled-atop” with no
component-specific interface, connectivity
or ordering requirements

Cons

- Different way of thinking about programming.

- Ironically, more natural ways of programming
are perceived as unnatural because of our past
training.

- Does it scale with thousands or million
concurrent b-threads?

- Not currently used by many people.

- Lack of best-practices, tools, community, etc.

Resources

- https://github.com/Imatteis/behavioral

- https://github.com/Imatteis/react-behavioral
- https://github.com/Imatteis/redux-behavioral

Harel, David, Assaf Marron, and Gera Weiss. "Behavioral
programming.” Commun. ACM 55.7 (2012): 90-100.

